

Hot Water Treatment As A Promising Alternative To Methyl Bromide

N.Kita¹, K.Nishi² and S.Uematsu³ ¹Kanagawa Inst.Agri.Sci., ²Natinal Inst.Tea and Vegetables, ³ Chiba Pref.Agri.Res.Center, JAPAN

Total Use of MB in **JAPAN 8,000t** (1994) < No.3 in the world >

Melon, Cucumber Tomato, Sweet Pepper Strawberry, Ginger

Developed in early '80s

pply 1,500 to 3,000t/ha of Hot Water (80 °<<)

rnem user

Dragging System

-Developed by Kanagawa Hort.Cult.Exp.Stn in 1983

Hot Water

Treatment In JAPAN

- -Suitable for large scale greenhouses & fields
- -Costs \$ 4,000 to \$ 5,000/ha

Diesel-Fired Boiler

-Developed by National Agri.Center in 1986
-Suitable for small scale, sloped greenhouses & fields
-Costs \$ 2,500 to \$ 5,000/ha

Pulse-Jet Boiler

Applying Hot Water from Heat-tolerant polyethylene tubes

Hot Water

Comparison of Soil Temperature between Soil Solarization and Hot Water Treatment

Effect of hot water treatment on the viability of *F.oxysporum* f.sp. *lycopersici* (Fol) and the suppression of the wilt disease occurrence

Treatment Soil Depth Density of Fol¹ Disease severity²

Hot water	10 cm	0 cfu	0
	20	0	0
	30	0	0
	50	435	4.2
	70	29,400	8.3
Non-treated	-	46,900,000	45.8

¹Before the hot water treatment, Fol-infested soil wrapped with cheesecloth was berried in the different depth and taken out respectively from the soil 7 days after the treatment. Values represent colony forming unit (cfu) per 1 g of dry soil. ²Culculated from $100 \times \Sigma$ (wilt disease index from 0 to 4×number of the diseased plants)/(4×number of the total plants examined).

Effect of Hot Water Treatment on the Occurrence of Spinach Fusarium Wilt (A) and Weeds(B)

Effective to more than 19 crops 36 diseases and nematodes

Fusarium wilt

Carnation, Celery, Japanese radish, Spinach, Tomato, Watermelon

Bacterial wilt

Carnation, Tomato, Eggplant

Rhizoctonia, Phytophthora, Verticillium, Pyrenochaeta, Sclerotium, Agrobacterium

Root-knot Nematodes

The Effects Last Long Enough

(A:Yanase 2003, B: Okamoto et al.2002)

Hot Water Treatment In JAPAN

Cost Analysis in Greenhouse Tomato

per haDiesel Oil : 20kL\$ 8 ,000 - 12,000Water : from WellFreeElectricity : 3 phase 200V\$300 - 400Polyethylene Cover Sheet\$1,400 - 1,500Rental Fee\$600

Total \$10,300 - 14,500

The Effect lasts at least 3 YEARS $\longrightarrow 1/3$

Chloropicrin Dazomet \$3,400 - 3,600 \$3,500 - 4,000

(Kitabatake 2000)

Additional Effects on The Physical and Chemical Soil Properties

pH goes UP and EC goes DOWN (Okamoto,2002)

Additional Effects on The Yields

Aug, 2001 at Kanagawa Inst.Agri.Sci.

Nation-wide Symposium on Hot Water Treatment

Hot Water Treatment is Rapidly Increasing in Use As the Most Promising, Eco-Friendly MB Alternative

FUTURE PERSPECTIVES